Baze University

Financial Mathematics

About the course

The Mathematics lecturers are really helpful and willing to spend extra time to explain any difficult areas. There's a fantastic community here. It's not just a place to study for your degree, it's a place where you develop as a person.The influence of mathematics can be felt in almost every aspect of modern life, including finance, medical science, digital communications and even weather forecasting.A Mathematics degree at the Baze University will take you on a fascinating journey, preparing you for industry or further study.As a highly regarded discipline, mathematics both underpins contemporary life and is a fascinating subject in its own right.The skills you learn by studying and applying mathematics prove invaluable in solving the complex problems faced in business - so it is no surprise that Baze Mathematics graduates are in great demand in today's workplace.Our degree programmes encompass some of the latest advances in mathematics and statistics, finance and even music. We continually develop the scope and flavour of our programmes and aim to make them as flexible as possible.Their modular structure enables you to choose from a range of options, with plenty of choice available in the later years.As well as gaining an overview of the key theories and techniques that underlie modern pure and applied mathematics, you will be given ample opportunity to study specialized topics in depth, letting you focus on your specific interests.

What you will learn

The course aims:
Our programmes produce graduates who are highly numerate and computer literate, and who have also developed well-honed analytical and other transferable skills, equipping them for a variety of interesting and rewarding careers. Along with acquiring these specific technical skills, you will gain a broad knowledge base and develop important general skills such as thinking independently, communicating effectively, meeting deadlines and engaging productively in teamwork. In addition to opening up a range of stimulating career prospects, our programmes are also an excellent preparation for further study. Providing the ideal preparation for a career in finance, our BSc Financial Mathematics consists of one-third core mathematics, one-third statistics and one-third economics and finance. These programmes also include financial topics such as analysis of shares, equities, cash flows and interest rates, along with an introduction to the principles of microeconomics and macroeconomics.

Graduate destinations

Mathematics And Statistics Central To Science
Technology Industries
Finance Industries
Logical Insight
Analytical Skills And Intellectual Discipline Gained From A Mathematical Education Are Highly Sought After In Areas Such As Law; Business And Management

Course Details

Course Structure
Year 1 | Semester 1
Code: GEN103
Lecturer: Mercy Johnson
Unit: 3
Prerequisite: No Prerequisite
Overview:

This module will introduce students to basic mathematical topics useful in their different courses of study.

Aims:

To introduce students to basic mathematical topics useful in their different courses of study at Baze University. Apart from learning the basic statistical tools useful for data collection, they will also gain valuable insight into number system, the concept of sets, laws of indices, solving equations and a wide range of other basic mathematical techniques. In essence, this module is designed to equip students with useful methods of solving and approaching mathematical problems.

Syllabus:

Introduction to Number System, Laws of Indices, General Inequality, Equation Systems, Algebra, Sequences and Series, Trigonometry as well as general overview of Statistics.

Teaching and learning methods:
  • Lectures: Lectures will be used to introduce and explain major ideas and theories and to illustrate their wide-ranging applications. 
  • Interactive lectures will review materials by encouraging their active participation - inviting questions, working through examples, giving short quizzes, discussing case studies, or showing a  video followed by a quiz, etc.
  • Classes: This will encourage students to begin to apply the knowledge gained to real and hypothetical cases and will encourage them also to gain confidence in presenting and defending their own ideas. Classes will usually require them to read some material(s) for discussion, or prepare answers, give some presentations, research a topic, take part in a debate, etc. 
  • Homework: Homework will be assigned regularly. Regular assignments will help them understand the material and they will get feedback.

Intended learning outcomes:

On the  successful completion of this module, students are expected to have developed their skills and have:

  • Ability to read and understand fundamental mathematics.
  • Ability to apply range of concepts in Mathematics or represent and solve problems in Mathematics.
  • Ability to represent and analyse data using the right techniques.


Assessment:
Exams: 60%
Test: 15%
Quiz: 10%
Coursework: 15%
Recommended reading list:
  • Basic College Mathematics by Elayn Matin-Gay, New Jersey, Pearson Prentice Hall.
  • College Mathematics for Business, Economics, Life Sciences & Social Sciences (11th Edition) by Raymond A. Bernet, Michael R, Ziegler, & Karl E. Byleen. New Jersey, Pearson Prence Hall.
  • Algebra & Trigonometry (Sixth Edition) by Michael Sullivan. Prentice Hall, Upper Saddle River, New Jersey 07458.
  • Any other mathematical textbook that covers any of the topics.

Code: CHM101
Lecturer: Jibrin Noah Akoji
Unit: 0
Prerequisite: No Prerequisite
Overview:
Aims:
Syllabus:
Teaching and learning methods:
Intended learning outcomes:
Assessment:
Exams: %
Test: %
Quiz: %
Coursework: %
Recommended reading list:
Code: PHY107
Lecturer: Babangida Babaji Abdullahi
Unit: 1
Prerequisite: No Prerequisite
Overview:

General Physics 1 practical is the laboratory section that cover all the topics taught in General Physics 1 (PHY101).

Aims:

The aim of this module is to assist students with the practical of all the topics (mechanics, heat and optics)

Syllabus:

The experiments include: Mechanics: timing experiments, simple pendulum, compound pendulum, measurement of g, moments, determination of moment of inertia, measurement of viscosity, use of force board, law of momentum. Optics: reflection using plane mirror, convex/concave mirror, concave/convex lens, refraction using a prism, critical angle, apparent depth/real depth, simple microscope, compound microscope.Heat: measurement of specific heat capacity of water and a solid, expansion of gas experiment using a long capillary tube, Joule’s law.

Teaching and learning methods:

This module is a purely experimental. Each experiment will be accompanied with laboratory manual. Students will be taken through the lab sections by Technologists and the module instructors. The students will then submit their laboratory reports for assessment.

Intended learning outcomes:

At the end of the module, students will be equipped with report writing skill. They will also understand the practical of what have been discussed in PHY101 class.Fundamentals of Physics by David Halliday, Robert Resnick and Jearl Walker, Vol. 1 8th Ed. Wiley (2007)
University Physics by Young Freedman, vol. 1 13th Ed. Addison-Wesley

Assessment:
Exams: 60%
Test: 15%
Quiz: 10%
Coursework: 15%
Recommended reading list:
  • Fundamentals of Physics by David Halliday, Robert Resnick and Jearl Walker, Vol. 1 8th Ed. Wiley (2007)
  • University Physics by Young Freedman, vol. 1 13th Ed. Addison-Wesley

Code: COM112
Lecturer: Mrs Lawrence Morolake Oladayo
Unit: 3
Prerequisite: No Prerequisite
Overview: NIL
Aims: NIL
Syllabus: NIL
Teaching and learning methods: NIL
Intended learning outcomes: NIL
Assessment:
Exams: 60%
Test: 15%
Quiz: 10%
Coursework: 15%
Recommended reading list: NIL
Code: GEN107
Lecturer: James Daniel
Unit: 0
Prerequisite: No Prerequisite
Overview:
Aims:
Syllabus:
Teaching and learning methods:
Intended learning outcomes:
Assessment:
Exams: %
Test: %
Quiz: %
Coursework: %
Recommended reading list:
Code: PHY101
Lecturer: Hamman Gabdo
Unit: 3
Prerequisite: No Prerequisite
Overview: General overview of the module, module description and students - instructor introduction.
Aims: To aid students to understand the broad-based fundamental principles of the physical world. This module will on the practical applications of everyday experience and industrial processes. 
Syllabus:
  • Measurement in physical world
  • One dimensional kinematics - distance, displacement, speed, velocity, acceleration, uniform, motion, free fall.
  • Vector and scalar - vector addition, subtraction, division, multiplication and applications.
  • Problem solving section.
  • Two-dimensional kinematics - position, displacement, velocity, acceleration and projectile.
  • Fundamental laws of Mechanics.
  • Problem solving and mid-term exam
  • Work, energy and power.
  • Temperature and heat.
  • Introduction to thermodynamics.
  • Hydrostatics.
  • Problem solving.
  • Elasticity.
  • Problem solving
Teaching and learning methods: Lectures: This will be used to introduce the module and explain major concepts of the fundamentals to students. The theories (equations) and their applications will be illustrated in this section.

Interactive Lectures: This section of the teaching will allow active student - instructor interactions. The instructor and students ask more questions and solve more examples.

Classes/Tutorials: Tutorial sections will encourage you (students) to begin to gain confidence in solving difficult problems. The students are required to prepare any difficult problems they are unable to solve on their own for discussion.

Class-work/Homework: Class-work and Homework will be assigned regularly. Students' answers to class-work and homework should be clear, concise and correct. Students will receive feedback on the homework and class-work.
Intended learning outcomes: Students are expected to develop the necessary skills required to solve fundamental problems in physics. This will enable them prepare for further studies in respective field.
Assessment:
Exams: 60%
Test: 25%
Quiz: 5%
Coursework: 10%
Recommended reading list:
  • Fundamentals of Physics by David Halliday, Robert Resnick and Jearl Walker, Vol. 1 (8th Ed.) Wiley (2007)
  • University Physics by Young Freedman, vol 1 (13th Ed.) Addison - Wesley
Code: GEN101
Lecturer: Andrew Bula
Unit: 3
Prerequisite: No Prerequisite
Overview:

NIL

Aims:

NIL

Syllabus:

NIL

Teaching and learning methods:

NIL

Intended learning outcomes:

NIL

Assessment:
Exams: 60%
Test: 15%
Quiz: 10%
Coursework: 15%
Recommended reading list:

NIL

Year 1 | Semester 2
Code: CHM102
Lecturer: Abubakar Alkali
Unit: 3
Prerequisite: No Prerequisite
Overview: NIL
Aims: NIL
Syllabus: NIL
Teaching and learning methods: NIL
Intended learning outcomes: NIL
Assessment:
Exams: 60%
Test: 15%
Quiz: 10%
Coursework: 15%
Recommended reading list: NIL
Code: PHY108
Lecturer: Babangida Babaji Abdullahi
Unit: 1
Prerequisite: No Prerequisite
Overview:

General Physics 2 practical is the laboratory section that cover all the topics taught in General Physics 2 (PHY102).

Aims:

The aim of this module is to assist students with the practical of all the topics (Electricity, magnetism, vibration and waves)

Syllabus:

Electricity: Ohm’s law, heating effect of a current, internal resistance of a cell, meter/Wheatstone Bridge, potentiometer measurement of ece, plotting of magnetic field. Sound: resonance tube, sonometer.

Teaching and learning methods:

This module is a purely experimental. Each experiment will be accompanied with laboratory manual. Students will be taken through the lab sections by Technologists and the module instructors. The students will then submit their laboratory reports for assessment.

Intended learning outcomes:

At the end of the module, students will be equipped with report writing skill. They will also understand the practical of what have been discussed in PHY101 class.

Assessment:
Exams: 60%
Test: 15%
Quiz: 10%
Coursework: 15%
Recommended reading list:
  • Fundamentals of Physics by David Halliday, Robert Resnick and Jearl Walker, Vol. 1 8th Ed. Wiley (2007)
  • University Physics by Young Freedman, vol. 1 13th Ed. Addison-Wesley

Code: GEN108
Lecturer: Mercy Johnson
Unit: 0
Prerequisite: No Prerequisite
Overview:
Aims:
Syllabus:
Teaching and learning methods:
Intended learning outcomes:
Assessment:
Exams: %
Test: %
Quiz: %
Coursework: %
Recommended reading list:
Code: PHY102
Lecturer: Joseph Asare
Unit: 3
Prerequisite: Physics 1 ,
Overview:

The subject of electromagnetism is a combination of electrostatics phenomena, magnetism, and current electricity. These must have seemed at one time to be entirely different phenomena until in 1829 when Oersted discovered that an electric current is surrounded by a magnetic field. The basic phenomena and the connections between these three disciplines were ultimately described by Maxwell towards the end of the nineteenth century in four famous equations called the Maxwell's Equations. The course acquaints the student with concepts of electric and magnetic fields associated with particles and how these are affected in the presence of other particles.

Aims:

The aim of this module is to aid students in understanding the broad-based fundamental principles of electricity and magnetism by emphasizing on applications associated to industrial processes and everyday experiences.

Syllabus:

Electrostatics.

Conductors and Currents.

Magnetism.

Maxwell's Equations.

Electromagnetic Waves and Oscillations.

Teaching and learning methods:

  • Lectures: This will be used to introduce the module and explain major concept of the fundamentals to students.
  • Interactive Lectures: This section of the teaching will allow active student-instructor interactions.
  • Classes/Tutorials: Tutorial sections will build confidence in students and encourage participation in problem solving.
  • Class-work/Homework: Class-work and Homework will be assigned regularly. Students will received feedback on the homework and class-work for improvement.

Intended learning outcomes:

The theories and their applications illustrated in this module should expose students to the required foundational knowledge in Electromagnetism required for higher education in the department. 

Assessment:
Exams: 60%
Test: 20%
Quiz: 5%
Coursework: 15%
Recommended reading list:

  1. Young, H. D., & Freedman, R. A. (2015). University Physics with Modern Physics and Mastering Physics. Academic Imports Sweden AB.
  2. Serway, R. A., Beichner, R. J., & Jewett, J. W. (2000). Physics for scientists and engineers with modern physics.
  3. Paul E. Tippens. (2007). Electricity and Magnetism Lecture Notes. Southern Polytechnic State University.
  4. Lisa Jardine-Wright. (2008). Introduction to Electricity and Magnetism. Cavendish Labrotory.

Code: GEN104
Lecturer: Omojuyigbe Abosede
Unit: 3
Prerequisite: Use of English 1 ,
Overview:

In this module, students will learn to write well structured essays, overcome speech anxiety, work effectively in groups , the art of public speaking and give well structured presentations

Aims:

The aim of the module is to teach students the rudiments of public speaking, team work  and  presentations.

Syllabus:

Reading comprehension, Literary appreciation, Writing skills, Presentation skills, Working in groups for a presentation, Preparing for assessed presentation.

Teaching and learning methods:
  • Lectures will be given through power point presentations to explain the topics contained in the syllabus.
  • Class discussions will also be used to enhance individual participation, self confidence and team work as the students will be required to give presentations fortnightly


Intended learning outcomes:

Students who have taken this module should be able to:

  • Read effectively
  • Write well structured essays
  • Work effectively in a group or team
  • Carry out researches independently
  • Give good presentations


Assessment:
Exams: 60%
Test: 15%
Quiz: 10%
Coursework: 15%
Recommended reading list:
  • Turner, Kathy et al., Essential Academic Skills,[ Oxford University Press,  Oxford ,2011]
  • Kathleen T. McWhorter,  Academic Reading,  [ HarperCollins College Publishers, 1994]
  • Seely, John, Oxford Guide to Effective Reading and Speaking, [ Oxford University Press, Oxford, 2005]

Year 2 | Semester 1
Code: GEN201
Lecturer: Shulammite Paul
Unit: 15
Prerequisite: No Prerequisite
Overview:
Aims:
Syllabus:
Teaching and learning methods:
Intended learning outcomes:
Assessment:
Exams: %
Test: %
Quiz: %
Coursework: %
Recommended reading list:

Entry requirements

Home / UTME


SSCE (WAEC, NECO, etc);
JAMB;

Home / Direct Entry


A level / Diploma / IJMB / HND / First degree;
JAMB DE Form;
SSCE (WAEC, NECO, etc);

Home / Direct Transfer


SSCE (WAEC, NECO, etc);
Academic transcript;
Please note: Admission on transfer will only be issued after on campus interview;

Foundation


SSCE (WAEC, NECO, etc);

International (Nigerian)


O' level result;
JAMB;
Please note: You can get a conditional admission if you does not have JAMB, but you must provide it before you progress to 200 level;

International (Foreign)


O' level result;

Staff

S/N Staff Name Rank
1 ASHAFA SANI Graduate Assistant
2 DR. SAMSON BOLARINWA BOLAJI Senior Lecturer
3 MMADUABUCHI OKPALA Lecturer I